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ABSTRACT

The goal of the proposed research is to test a statistical model of speech recognition that
incorporates the knowledge that speech is produced by relatively slow motions of the
tongue, lips, and other speech articulators.  This model is called Maximum Likelihood
Continuity Mapping (Malcom).  Many speech researchers believe that by using constraints
imposed by articulator motions, we can improve or replace the current  hidden Markov
model based speech recognition algorithms.  Unfortunately, previous efforts to incorporate
information about articulation into speech recognition algorithms have suffered because 1)
slight inaccuracies in our knowledge or the formulation of our knowledge about articulation
may decrease recognition performance, 2) small changes in the assumptions underlying
models of speech production can lead to large changes in the speech derived from the
models, and 3) collecting measurements of human articulator positions in sufficient quantity
for training a speech recognition algorithm is still impractical.  The most interesting (and in
fact, unique) quality of Malcom is that, even though Malcom makes use of a mapping
between acoustics and articulation, Malcom can be trained to recognize speech using only
acoustic data.  By learning the mapping between acoustics and articulation using only
acoustic data, Malcom avoids the difficulties involved in collecting  articulator position
measurements and does not require an articulatory synthesizer model to estimate the
mapping between vocal tract shapes and speech acoustics.  Preliminary experiments that
demonstrate that Malcom can learn the mapping between acoustics and articulation are
discussed.  Potential applications of Malcom aside from speech recognition are also
discussed.  Finally, specific deliverables resulting from the proposed research are described.

I. Introduction

Hidden Markov models (HMM’s) are among the most popular tools for performing
computer speech recognition (see Huang, Ariki & Jack, 1990).  One of the primary reasons
that HMM’s typically outperform other speech recognition techniques is that the
parameters used for recognition are determined by the data, not by preconceived notions of
what the parameters should be.  This lets HMM’s deal with intra- and inter-speaker
variability despite our limited knowledge of how speech signals vary and despite our often
limited ability to correctly formulate rules describing variability and invariance in speech.  In
fact, it is often the case that when HMM parameter values are constrained using our
(possibly inaccurate) knowledge of speech, recognition performance decreases.

Nonetheless, many of the assumptions underlying  HMM’s are known to be inaccurate, and
improving on these inaccurate assumptions within the HMM framework can be
computationally expensive (Lee, 1989, p. 142).  We argue that by using probabilistic
models that more accurately embody the process of speech production, we can create
models that have all the advantages of  HMM’s, but that should more accurately capture the
statistical properties of real speech samples -- leading to more accurate speech recognition.

As reviewed elsewhere (McGowan & Faber, 1996; Rose, Schroeter & Sondhi, 1996) there
have been several attempts to take advantage of articulation information to improve speech
recognition.  Some researchers have obtained improvements in speech recognition
performance by building knowledge about articulation into HMM’s (Deng & Sun, 1994;
Erler & Deng, 1992), or by learning the mapping between acoustics and articulation using
concurrent measurements of speech acoustics and human speech articulator positions
(Papcun et al., 1992; Zlokarnik, 1995).  Others have worked toward incorporating articulator
information by using forward models (articulatory speech synthesizers) to study the
relationship between speech acoustics and articulation (McGowan & Lee, 1996; Schroeter
& Sondhi, 1994).
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The model we will discuss, Maximum Likelihood Continuity Mapping (Malcom), differs
from these previous attempts in that it learns the mapping from speech acoustics to
articulator positions from acoustics alone -- articulator position measurements are not even
used during training (the assertion that the mapping can be learned is backed up by the
results of the preliminary experiments described below).  Unlike Linear Predictive Coding
(Markel & Gray, 1976; Wakita & Gray, 1975), which attempts to make the problem of
recovering vocal tract shapes from speech acoustics tractable by using problematic
simplifications (Sondhi, 1979, discusses several problems with the LPC approach), the
assumptions underlying Malcom are well-founded.  In fact, the main (and surprisingly
powerful) assumption used by Malcom is that articulator motions produced by muscle
contractions have little energy above 15 Hz, which is well documented (Muller & McLeod,
1982; Nelson, 1977).

The fact that Malcom derives so much about the relationship between acoustics and
articulation from so few assumptions should be a big advantage over current systems.
Consider that as we build more assumptions about articulator motions into existing models,
we have a greater chance of incorporating invalid constraints and potentially decreasing
recognition performance.  For example, some of the rules used in existing systems “are
rather simplistic and contain several unrealistics aspects” (Deng & Sun, 1994, p. 2717).
Furthermore, systems that require that information about articulation be learned from human
data suffer from the fact that collecting concurrent measurements of speech acoustics and
articulator positions in enough quantity to train a large vocabulary speech recognition
algorithm is currently impractical.  Even systems that avoid the need for human data by
using articulatory speech synthesizers may be adversely affected by inaccurate assumptions
-- the mapping between speech acoustics and speech articulation for articulatory speech
synthesizers is strongly dependent on assumptions underlying the synthesizers and appears
to differ in important ways from the mapping observed for human speech production
(Hogden et al., 1996).

Before discussing how to use articulatory constraints, we will give a brief description of
HMM’s.  This will allow us to highlight the similarities and differences between HMM’s
and the proposed technique.  In a straightforward implementation of the HMM approach,
models are made of each word in the vocabulary.  The word models are constructed such
that we can determine the probability that any acoustic speech sample would be produced
given a particular word model.  The word model most likely to have created a speech sample
is taken to be the model of the word that was actually spoken.  For example, suppose we
produce some new speech sample, Y.  If wi is the model for word i, and wi maximizes the
probability of Y given wi, then a HMM speech recognition algorithm would take word i to
be the word that was spoken.  In other variants of HMM speech recognition, models are
made of phonemes, syllables, or other subword units.
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Figure 1
Figure 1 shows a 5 state HMM of a type commonly used for speech recognition (Rabiner
& Juang, 1986).  Each of the circles in Figure 1 represents a HMM state.  At any time, the
HMM has one active state and a sound is assumed to be emitted when the state becomes
active.  The probability of sound y being emitted by state si is determined by some
parameterized distribution associated with state si  (e.g. a multivariate Gaussian
parameterized by a mean and a covariance matrix).  The connections between the states
represent the possible interstate transitions.  For example, in the left-to-right model below, if
the model is in state s2 at time t, then the probability of being in state s4 at time t+1 is a2 4.

HMM’s are trained using a labeled speech data base.  For example, the data set may contain
several samples of speakers producing the word “president”.  Using this data, the
parameters of the “president” word model (the transition probabilities and the state output
probabilities) are adjusted to maximize the likelihood that the “president” word model will
output the known speech samples.  Similarly, the parameters of the other word models are
also adjusted to maximize the likelihood of the appropriate speech samples given the
models.  We expect that as the word models more closely match the distributions of actual
speech samples (i.e. the probability of the data given the word models increases), the
recognition performance will improve -- which is why the models are trained in the first
place.

Malcom attempts to make the word models give better estimates of the distributions of
speech data by basing the models on the actual processes underlying speech production.
Consider that speech sounds are produced by slowly moving articulators.  Thus, if we know
the relationship between articulator positions and speech acoustics, we should be able to use
information about the articulator positions preceding time t to accurately predict the
articulator positions at time t, and therefore predict the acoustic signal at time t.  In the
following discussion, we show how maximum likelihood techniques can be brought to bear
on this problem.

II.  Malcom

As with HMM’s, in order to determine which sequence of words was most likely to have
created the observed data, we want to be able to determine the probability of the observed
data given a word model.  In the articulatory recognition algorithm presented here, each
word is described in terms of the sequence of articulator positions used to create the word.
Thus, to find the model for the word “president”,  we collect several acoustic recordings of
“president”  and then find the articulator path that maximizes the conditional probability of
the recorded acoustics sequences.  In section II.A we describe how an articulator path (a
word model) that maximizes the probability of the data can be found if we know about the
mapping from speech sounds to articulator positions.

Because we cannot determine the optimal articulator trajectories without knowing the
mapping from articulator positions to acoustics, in section II.B we show how Malcom
learns an invertable, probabilistic mapping between articulator positions and acoustics.
Acoustic speech signals are represented as sequences of vector quantization (VQ) codes
(Ahalt, Krishnamurthy, Chen & Melton, 1990; Gray, 1984; Linde, Buzo & Gray, 1980
describe vector quantization).  In section II.C we show an example of how Malcom can be
applied to the case where the distribution of articulator positions that produce a code is
assumed to be Gaussian.

II.A  Finding Articulatory Trajectories that Maximize the Probability of the Observed Data
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In order to describe how to use Malcom to perform speech recognition, we will start with
some definitions.  Let:

n = the number of vector quantization codes in a given speech sample,

c(t) = the VQ code assigned to the tth window of speech,

c = [c(1), c(2), ... c(n)] = a sequence of VQ codes used to describe a speech sample,

xi(t) = the position of articulator i at time t,

x(t) = [x1(t), x2(t), ... xd(t)] = a vector composed of the positions of all the articulators at time
t, and

X = [x(1), x(2), ... x(n)] = a sequence of articulator configurations.

Further definitions are needed to specify the mapping from articulation to VQ codes.  Let

P(ci) = the probability of observing code ci given no information about context,

P(x|ci,j) = the probability that articulator position x was used to produce VQ code ci where:

j = a set of model parameters, e.g. j could include the mean and covariance matrix of a
      Gaussian probability density function used to model the distribution of x given c.

Note that we have not specified distributions that give P(x|ci,j).  We avoided limiting
P(x|ci,j) because we want to allow for the various possible mappings from acoustics to
articulator positions.  For example, it has often been argued that many different articulator
positions can be used to produce the same acoustic signal (Atal, Chang, Mathews & Tukey,
1978; Schroeter & Sondhi, 1994).  Although the limited research on human speech
production data argues that articulator positions can be recovered from acoustics much more
accurately than computer simulations suggest (Hogden et al., 1996; Ladefoged, Harshman,
Goldstein & Rice, 1978; Papcun et al., 1992), if there are multimodal distributions of
articulator positions that can be used to produce identical acoustic signals, then it may be
necessary to specify P(x|ci,j) as a mixture of Gaussians.

With these definitions, the probability of observing code cj given that the current articulator
position is x, is expressed as:

P(cj x,j) =
P(c j ,x j)

P(x j)
=

P(cj , xj)
P(ci ,x j)

i
Â

=
P(x cj ,j)P(cj)

P(x ci ,j)P(ci)
i

Â
Eq. 1

Assuming conditional independence

P c X,j[ ] = P c(t) x(t),j[ ]
t =0

n

’ Eq. 2

Note that the probability of observing a code is not assumed to be independent of the
preceding and subsequent codes, it is only assumed to be conditionally independent.  So if
x(t) is dependent on x(t’) then c(t) is dependent on c(t’).  As demonstrated below, by using
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an appropriately constrained model of possible articulator trajectories the sequences of
codes can be tightly constrained in a biologically plausible manner.

It is possible to find the articulator path that maximizes the probability of a sequence of
codes, i.e. find the X  that maximizes P(c|X,j), or equivalently, that maximizes
LogP c | X,j[ ] .  Taking the logarithm of Eq. 2 we get:

LogP c X,j[ ] = LogP c(t)x(t), j[ ]
t

Â Eq. 3

To show how to maximize P(c|X,j), we substitute Eq. 1 into Eq. 3 and separate the terms in
the logarithm to get:

LogP c X,j[ ] = LogP x(t)c(t), j[ ] + LogP c(t)[ ] - Log P x(t) ci ,j[ ]P ci[ ]
i

ÂÏ 
Ì 
Ó 

¸ 
˝ 
˛ t

Â Eq. 4

Using — to denote the gradient with respect to the components of x(t’), LogP c X,j[ ]  is
maximized when:

—LogP c X,j[ ] = 0 " ¢ t Eq. 5

Substituting Eq. 4 for the left hand side of Eq.5 and reducing gives:

— LogP x(t)c(t), j[ ] + LogP c(t)[ ] - Log P x(t)ci[ ]P ci[ ]
i

ÂÏ 
Ì 
Ó 

¸ 
˝ 
˛ t

Â = 0 " ¢ t 

—P x(t) c(t),j[ ]
P x(t) c(t),j[ ] +

—P c(t)[ ]
P c(t)[ ]

-

—P x(t) ci ,j[ ]P ci[ ]
i

Â
P x(t)ci ,j[ ]P ci[ ]

i
Â

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô t

Â = 0 " ¢ t 

concluding with:

—LogP c X,j[ ] =
—P x( ¢ t )c( ¢ t ),j[ ]
P x( ¢ t )c( ¢ t ),j[ ] -

P ci[ ]—P x( ¢ t ) ci ,j[ ]
i

Â
P x( ¢ t )ci ,j[ ]P ci[ ]

i
Â

= 0 " ¢ t Eq. 6

The preceding analysis is incomplete because it ignores constraints on the possible
articulator paths.  To incorporate biologically plausible constraints on articulator motion, we
will allow only those articulator trajectories that have all their energy below some cut-off
frequency (say 15 Hz, since actual articulator paths have very little energy above 15 Hz).
The constraint that the articulator path have all of its energy below the cut-off frequency is
equivalent to requiring that the path lie on a hyperplane composed of the axes defined by
low frequency sine and cosine waves.

When —Log(c|X,j) is perpendicular to the constraining hyperplane, so that Log(c|X,j) can
not increase without X traveling off the hyperplane, then we have reached a constrained local
minimum (Marsden & Tromba, 1981). Thus, the smooth path that maximizes the likelihood
of the observed data is the path for which —Log(c|X,j) has no components with energy
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below the cut-off frequency.  This suggests the following algorithm for finding the smooth
path that maximizes the probability of the data:
1) start with any smooth articulator path.
2) find the gradient of the log probability of the smooth path.
3) low-pass filter the gradient to get the gradient projected onto the constraining hyperplane.
4) add the low-pass filtered gradient times some small constant to the path to get a better
    estimate of the most likely smooth path.
5) repeat steps 2 - 4 until the algorithm converges.

There are also a variety of standard numerical algorithms, such as the conjugate gradient
technique, that can be used to maximize functions.  Using one of these algorithms can speed
up the process of finding the most likely smooth path.

II.B  Finding a Mapping from Articulation to Acoustics
In the preceding section, we assumed that we knew P(c) and P(x|c,j).  In this section we
show that these values can be determined using only acoustic data.  This is the most
important section of this proposal, because P(x|c,j) is a probabilistic mapping from speech
sounds to articulator positions, and our claim is that this mapping can be inferred using
training data composed of only sequences of VQ codes.  The techniques in this section
allow us to use articulator information without hard-wiring possibly faulty knowledge of
phonetics into a model, without collecting measurements of articulator positions, and
without using potentially inaccurate articulatory synthesizers to learn the mapping from
acoustics to articulator positions.  We develop the techniques in this section and
demonstrate their power in the preliminary experiment below.

Using maximum likelihood estimation, it is possible to find a good approximation of the
relationship between acoustics and articulation by building on the framework presented
above.  All we have to do is iteratively repeat two steps:

1) given a collection of quantized speech signals and some initial estimate of the mapping
    from acoustics to speech, use the procedures in section II.A to find the paths
    that maximize the conditional probability of the observed data.

2) given the paths that maximize the probability of the data, find the value of j and the P(ci)
    values that will maximize (or at least increase) the conditional probability of the data.

Since both of these steps will increase the probability of the data, by iteratively repeating
them, we will increase the probability of the data until we have reached a local (possibly
global) maximum.

Calculation of P(c) and j can be accomplished using standard maximization algorithms.
Maximization algorithms that use gradient information typically require less computation
than algorithms that don’t use the gradient, making it advantageous to have expressions for
—Log(c|X,j) with respect to j and with respect to P(c).  The expression for —Log(c|X,j)
with respect to j is:
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—LogP c X,j[ ]

= — LogP x(t)c(t),j[ ] + LogP c(t)[ ] - Log P x(t) ci[ ]P ci[ ]
i

ÂÏ 
Ì 
Ó 

¸ 
˝ 
˛ t

Â

=
—P x(t) c(t),j[ ]
P x(t) c(t),j[ ]

+
—P c(t)[ ]
P c(t)[ ]

-
— P x(t) ci ,j[ ]P ci[ ]{ }

i
Â

P x(t) ci ,j[ ]P ci[ ]
i

Â

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô t

Â

concluding with:

—LogP c X,j[ ] =
—P x(t) c(t),j[ ]
P x(t) c(t),j[ ] -

— P x(t) ci ,j[ ]P ci[ ]{ }
i

Â
P x(t) ci ,j[ ]P ci[ ]

i
Â

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô t

Â Eq. 7

The expression for —Log(c|X,j) with respect to P(c) can be derived as follows:

—LogP c X,j[ ] =
1

P ck[ ]t Œc ( t )= ck

Â -
P x(t)ck,j[ ]
P x(t) ci ,j[ ]P ci[ ]

i
Â

Ï 

Ì 
Ô 

Ó Ô 

¸ 

˝ 
Ô 

˛ Ô t =0

n

Â

=
nk

P ck[ ]
-

P x(t)ck ,j[ ]
P x(t) ci ,j[ ]P ci[ ]

i
Â

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô t = 0

n

Â

=
nk

P ck[ ]
-

1
P ck( )

P ck x(t),j[ ]
t

Â

@
nk

P ck[ ]
-

1
P ck( )

P x( )P ck x,j[ ]
x

Â

=
nk

P ck[ ]
-1

Eq. 8

where nk is the number of times ck is observed in the speech sample.  Since the sum of the
P(c) values must be 1, finding the P(c) values that maximize the conditional probability of
the data is a constrained optimization problem in which we find the P(c) values by solving:

nk

P(ck )
- 1 = l— P(ci)

i
Â = l Eq. 9

From Eq. 9 we see that setting

P(ck) = nk/n Eq. 10

will maximize the conditional probability of the data.
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Thus, using only acoustic speech samples, two important learning steps can be performed.
The first is to learn the relationship between acoustics and articulation.  The second is to
learn articulator trajectory models for each word.  However, the data required for the first
learning step is not necessarily the same as that required for the second learning step.  We
do not need labeled training data to learn the relationship between acoustics and articulation
for a speaker but we do need labelled training data to learn word models.

II.C  Example
Although many different forms of the P x(t) c(t),j[ ] distributions could be used, in this
section we will derive the gradient equations for the case where the distribution of articulator
positions that produce sounds quantized by code c is a multivariate Gaussian characterized
by the equation:

P[x | c,j] =
1

2p( )d 2
s c( )

1 2 exp -
1
2

x - m c( )[ ]t
s-1 c( ) x - m c( )[ ]Ï 

Ì 
Ó 

¸ 
˝ 
˛ 

Eq. 11

where:
d is the number of dimensions in the articulator space (i.e. the number of 
articulators),

 m c( )  is a vector giving the mean of all the articulator positions used to produce 
sounds quantized with vector quantization code c.  For example, mi(c) may give 
the mean lower lip position used to create sounds quantized as code c,

s c( )  is the covariance matrix of the multivariate Gaussian distribution of articulator 
positions that produce sounds quantized with code c, and

x  is a vector describing an articulator configuration.

Before we derive the gradient equations, note that the x, m(c) and s(c) values that maximize
the conditional probability of the data are not unique.  For example suppose we have found
the x, m(c), and s(c) values that maximize the conditional probability of the data.  Let R be
an orthogonal rotation matrix, y be an arbitrary vector, and a be a nonzero scalor.  If we let
x¢=aRx+y, let m¢(c)=aRm(c)+y, and let s¢(c) = a2Rs(c)Rt then the probability of x¢ given
a code and the model is

P[ ¢ x | c, ¢ j ] =
1

a d / 2 P[x | c,j] Eq. 12

If we substitute Eq. 12 into Eq. 1 we find that the conditional probability of the VQ codes is
the same for x¢, m¢(c) and s¢(c) as it was for x, m(c) and s(c). Thus we can rotate, reflect,
translate and scale the m(c) values and get an equally good solution as long as we make the
appropriate changes to the x and s(c) values.

Returning to the problem of finding the gradient equations for the Gaussian probability
density function, let —  denote the gradient with respect to the components of x, so

—P x c,j[ ] = -P x c,j[ ] s-1 c( ) x - m c( )[ ] Eq. 13
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Which can be substituted into Eq. 6 to show how to find the path that maximizes the
conditional probability of the data:

—LogP c X,j[ ] = - s-1 c( ¢ t )[ ] x( ¢ t ) - m c( ¢ t )[ ]{ }

+
P ci[ ] P x( ¢ t )ci ,j[ ]s-1 ci( ) x( ¢ t ) - m ci( ){ }

i
Â

P x( ¢ t ) ci ,j[ ]P ci[ ]
i

Â

Eq. 14

Similarly, the gradient with respect to m(ck) is:

—P x ci ,j[ ] = P x ci ,j[ ] s-1 ci( ) x - m ci( )[ ]dik    d ik =
1 if i = k
0 if i ≠ k

Ï 
Ì 
Ó 

Eq. 15

Which, finally, can be substituted into Eq. 7 to get:

—LogP c X,j[ ] = s-1 c(t)[ ] x t( ) - m c(t)[ ]{ }
t Œc ( t )=ck

Â

-
P ck[ ]P x t( )ck,j[ ] s-1 ck( ) x t( ) - m ck( ){ }

P x(t)ci ,j[ ]P ci[ ]
i

Ât
Â

Eq. 16

III. Preliminary Studies

III.A  Recovering Mean Articulator Positions From Acoustics
Preliminary studies have demonstrated that a simplification of Malcom (Malcom 1) is able
to learn the mapping from acoustics to articulator position using a training set composed
only of acoustic data.  Specifically, this experiment shows that, if we categorize short
windows of speech acoustics, and make the assumption that the articulator positions used to
create a given acoustic category are distributed according to a multivariate Gaussian, we can
estimate the mean articulator configuration associated with each acoustic category.  This
experiment is a shortened version of an experiment reported elsewhere (Hogden, 1995b).

The simplifications in Malcom 1 significantly decrease training time when trying to learn
the mapping from acoustics to articulation,  but do not allow the direct use of Malcom 1 for
estimating the conditional probability of the data.  Nonetheless, learning the mapping from
acoustics to articulation is considered an extremely difficult task, so the fact that Malcom 1
succeded in learning this mapping without training on articulator measurements can be
taken as an indication of the power of Malcom.

III.B Data
All speech samples were produced by a male Swedish speech scientist fluent in both
Swedish and English.  The speaker produced utterances containing two vowels spoken in a
/g/ context with a continuous transition between the vowels, as in /guog/.  The vowels in the
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utterances were all pairs of 9 Swedish vowels (/i/, /e/, /œ/, /a/, /o/, /u/, and the front rounded
vowels /y/, /¨/, and /P/), as well as the English vowel /E/, for a total of 90 utterances (Fant,
1973).  While recording the utterances, the positions of receiver coils on the tongue, jaw,
and lips were measured using an EMMA system (Perkell et al., 1992).  Note that the
articulator positions were only measured in order to allow comparisons between estimated
and actual articulator positions.

III.C  Signal Processing
Spectra were recovered from 32 cepstrum coefficients of 25 ms Hamming windows of
speech  These spectra were categorized into 256 categories using vector quantization and the
mean articulator configuration associated with each code was calculated.

III.D  Calculating Actual Mean Articulator Positions
While Malcom 1 estimates the mean articulator configurations without articulatory
measurements, in order to compare Malcom 1's estimates with the actual mean articulator
configurations, it is necessary to calculate the mean articulator configurations from the
articulator measurements.  The mean articulator position associated with sound type 1 was
found by averaging the receiver coil configurations used to produce sounds that were
classified as type one.  The mean articulator position was calculated for each other sound
type in the same way.

III.E Estimating the Mean Articulator Positions Using Malcom 1
Instead of maximizing the conditional probability of the observed data, Malcom 1 recover
the mapping between acoustics and articulation by maximizing the probability of the smooth
articulator paths.  Mathematically, this amounts to ignoring the second term in Eqs. 14 &
16.  The simplified versions of Eqs. 14 and 16 are, respectively:

—LogP c X,j[ ] = - s-1 c( ¢ t )[ ] x( ¢ t ) - m c( ¢ t )[ ]{ } Eq. 17

and

—LogP c X,j[ ] = s-1 c(t)[ ] x t( ) - m c(t)[ ]{ }
t

Â Eq. 18

Notice that Eq. 18 is significantly simpler to maximize than Eq. 16.  Eq. 16 requires an
iterative maximization algorithm whereas Eq. 18 can be solved analytically.  The analytic
solution for Eq. 18 is to set

m(ci ) =

x(t)
t ' c(t )=c i

Â
ni

Eq. 19

P(c) is not calculated in Malcom 1 because  no information about P(c) can be extracted
without trying to maximize the conditional probability of the data instead of the probability
of the smooth paths.  For this study, all the covariance matrices were set to the identity
matrix.

One difficulty in using Malcom 1 is that there is a degenerate solution in which all of the
m(c)’s converge to the same point.  This problem was avoided by forcing the variance of the
m(c)’s to be 1.

III.F  Comparing Estimated to Actual Mean Articulator Configurations
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Since the mean values calculated by Malcom 1 can be translated, rotated, reflected or scaled
compared to the actual mean articulator positions, comparisons between the estimated mean
articulator positions and the actual mean articulator positions is non-trivial.  One way to
determine whether the estimates of the mean articulator positions in a maximum likelihood
continuity map supply information about the actual mean articulator positions is to see
whether equations can be constructed giving the actual mean positions from the estimated
mean positions.  In order for the mean articulator position estimates to be useful, the
equations should be simple.  This experiment focused on linear functions of the form:

 ˆ A ic = a id
d =1

D

Â mdc + ki     with e ic = Aic - ˆ A ic Eq. 20

where:
ˆ A ic  is the mean position of the receiver coil i for sounds of type c as estimated by

      the linear equation,

Aic  is the actual mean position of the receiver coil i for sounds of type c,

D  is the number of dimensions in the Malcom 1 solution,

mdc  is the position of code c on the dth dimension of the Malcom 1 solution.
The other parameters, a id  and ki , are values that will minimize the sum of the squared error
terms.  An equation of this form is particularly interesting because solving for the unknown
a id  and ki  values is equivalent to finding axes in the Malcom 1 solution that correspond
most closely to the articulator positions  -- essentially compensating for the fact that the
Malcom 1 solution can be rotated, scaled, translated, or reflected with respect to the actual
articulator positions.

Using standard multiple regression techniques (Neter, Wasserman & Kutner, 1985) the a id

and ki  values that minimize the sum of the squared error terms can be found.  Multiple
regression also gives a quantitative measure of the extent to which the equation is accurate,
namely, the multiple regression r value.

Figure 2 shows the multiple regression r values obtained when trying to relate the positions
of codes in the maximum likelihood continuity map to the mean articulator positions of
three key articulators -- the tongue rear (x and y positions), the tongue tip (y position) and
the upper lip (y position).  Figure 2 shows that a four dimensional Malcom 1 solution is
sufficient to capture much of the information about the mean articulator positions, and that
Malcom 1 solutions with more than four dimensions do only slightly better than a four
dimensional solution.  Figure 2 also shows that tongue body positions can be recovered
surprisingly accurately (Pearson r values of around 95%).
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Figure 2
III.G  Using Mean Articulator Configurations to Estimate Actual Articulator Configurations
The mean of all the articulator configurations used to produce an acoustic segment is not
necessarily a good estimate of the actual articulator used to produce a segment.  For example, if
two very different articulator positions (call the positions 1 and 2) create the same acoustic
signal (call it signal type 3), but articulator configurations between positions 1 and 2 produce
different signals, then the average articulator configuration will not even be among those that
create the signal type 3. (Jordan & Rumelhart, 1992).  However, since we have both acoustic
and articulator measurements in the data set, it is possible to determine whether the mean
articulator positions are good estimates of the actual articulator positions.  In short, the mean
articulator positions are good estimates of the actual articulator positions for this data set -- root
mean squared error values for points on the tongue were less than 2 mm (Hogden et al., 1996).
Of course, articulation positions can be recovered more accurately from acoustics when a small
articulator motion creates a large change in acoustics, e.g. near constrictions.

IV. Potential Applications of Malcom (other than speech recognition)

Speech recognition is already a 500 million to 1 billion dollar/year industry, despite
limitations of the current tools (Mott, 1995).  A sufficiently good speech recogniton
algorithm could completely change the way people interact with computers, possibly
doubling the input rate, since the number of words spoken per minute is more than double
the average typing rate.  So improving speech recognition is an admirable goal in itself.  But,
the impact of Malcom could extend far beyond speech recognition.  Malcom is a relatively
general statistical technique that has a variety of potential speech and non-speech
applications.  To give an impression of the possible payoff of developing Malcom, we
briefly describe some of these applications below.

IV.A  Speaker Recognition
Presumably, if Malcom leads to improvements in speech recognition it should also improve
speaker verification/identification algorithms, since techniques used for speaker verification
are very similar to those used for speech recognition.  To use Malcom for speaker
recognition, different mappings from acoustics to articulation would be made for each
speaker.  The likelihood that any given speaker produced a new speech sample could be
calculated using the technique described in section II.A.  For speaker identification, the
speaker most likely to have produced the speech signal would be chosen.  For speaker
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verification, the speaker would be verified if the likelihood of producing the speech was
sufficiently high or if it was higher than some cohort set.

High performance speech recognition would not only have a wide variety of commercial
uses (e.g. preventing unauthorized telephone access to bank accounts) but could be
important for controlling access to classified information.  The advantage of using voice
characteristics to verify identity is that voice characteristics are the only biometric data that
are typically transmitted over phone lines.

IV.B  Speech Coding
The path which maximizes the conditional probability of the data is also the path that
minimizes the number of bits that need to be transmitted in addition to the smooth path to
specify the data.  This can be seen from information theory (Sayood, 1996), which shows
that the number of bits that must be transmitted in addition to the smooth path is:

bits= 1 - LogP c(t) x(t),j[ ]( )
t

Â = 1 -
t

Â LogP c(t)x(t),j[ ]
t

Â Eq. 21

Since we are maximizing LogP c(t) x(t),j[ ]
t

Â , we are minimizing the number of bits.

Furthermore, articulatory trajectories can be transmitted with many fewer bits/second than
speech sounds.  Consider that the position of a single articulator can be transmitted using
about 30 samples/second and the range of articulator positions is much smaller than the
range of amplitudes found in acoustic signals.  So, assume that we need about 5 bits per
sample (similar to what is needed for LPC coefficients) for the tongue body x and y
coordinates, the tongue tip, and for two lip parameters, but only 1 bit per sample for the
velum (it is either opened or closed).  Further assume that we need to transmit about 600
bits/second for pitch, voicing, and gain information (as in the 2.4 kbit/second U.S.
Government Standard LPC-10).  This gives us an estimate of about 1380 bits/second, or
about 40% less than the 2.4 kbit/second U.S. Government Standard LPC-10.  These
considerations suggest that this approach has potential as a low bit-rate speech transmission
technique (c.f. Schroeter & Sondhi, 1992).

Such an application is likely to be particularly valuable in satellite communication.  To judge
the value, consider that the INMARSAT (A) provides communications service at a rate of
$39.00 per kbps-hour, based on figures provided in a January 1996 AFCEA
 (102) on Military Satellite Communications.  Arbitrarily, for only six hours of voice
communication per day for a year at 2400 bps, the cost of this service is $204,984.  Let me
emphasize that this estimate is for only one voice channel.  Even a relatively moderate (say
20%) decrease in the number of bits per second needed to transmit speech would be worth
approximately $40,000 per voice per year.  Furthermore, judging from recent experiments
with speech synthesis (see section IV.C below) speech reconstructed using this technique is
likely to be higher quality than the government standard.

IV.C  Speech Synthesis
Recent results show that HMM’s can be used to produce high quality synthesized speech
(Donovan, 1996).  However, since the HMM model of speech transitions is unrealistic,
Malcom can likely be used in much the same way as HMM’s to produce higher quality
synthesized speech.

In addition, since it should be easier to describe words in terms of the articulator motions
that produce the words than by describing the sound waves that are produced, Malcom may
simplify the user interface for speech synthesizers.  For example, we may be able to draw an
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articulator path and use a Malcom derived mapping from articulator positions to acoustics to
produce synthesized speech.

IV.D  Voice Mimicry
It may be possible to have a person speak into a computer, convert the speech sounds to
articulator trajectories, and then synthesize a different person’s voice with trajectories from the
first person (Hogden, 1995a) -- essentially allowing one person to talk into a machine and have
another person’s voice come out of the machine.  This could have a wide variety of potential
entertainment uses, and should be considered when evaluating the efficacy of speaker
verification systems.

IV.E  Non-Speech Applications
Although Malcom’s power has been demonstrated by its ability to solve a very difficult speech
analysis problem, the theory underlying Malcom is not restricted to speech.  Malcom is ideally
suited for many applications where something that is difficult to observe is moving smoothly
and producing output that is a function of its position.  For example, Malcom could be used to
model the output sequence of sensors on a car engine or in a factory or in a nuclear power plant
to determine whether the car/factory/power plant is operating normally. Various other
applications involving tracking objects that are not easy to observe will undoubtably be found.

V. First Year Deliverables

The goals for the first year are to create the tools necessary for studying Malcom and assess the
potential of Malcom for speech recognition and low bit-rate speech coding.

V.A  Tools
Two types of tools will be created for studying Malcom.  The first of these will be a set of C
(possibly C++) routines.  These routines can be made available for use by other reseaerchers.
In addition, since Entropic Research Laboratory’s HTK speech analysis software is widely
used by speech researchers, we will produce subroutines that can be used with the HMM toolkit
to perform Malcom.  The Entropic subroutines can also be distributed to other researchers.

V.B  Speaker-dependent Diphone Recognition Results
While there are a wide variety of speech databases already available, the first attempt at speech
recognition using Malcom will use data sets specifically designed to provide the transitions
Malcom needs to infer the mapping between acoustics and articulation.  Although the data sets
required for Malcom are no more difficult to collect than current data sets, publicly available
speaker-dependent isolated word databases (such as the Resource Management and TI 46-word
isolated word databases) were not designed with Malcom in mind, and may not provide a
sufficiently rich set of articulatory transitions.  For comparison, the data set used in the
preliminary experiment contained a rich set of vowel-to-vowel transitions and allowed the vowel
space to be accurately mapped.

To ensure that sufficient articulatory transitions are available for each speaker, we will construct
a data set for each speaker composed of at least two repetitions of V1CV2 utterances.  The
consonants will come from the set [p, b, t, d, k, g].  The vowel set will include 10 English vowels
[i, I, e, E, œ, a, o, u, U, ø].  This will provide 600 utterances (since V1 can be the same as V2),
including 10 examples of each VC and and CV diphone.

Using the first repetition of each VCV, diphone models will be made using both Malcom and
continuous density, left to right HMM’s.  Diphone recognition results for Malcom and for the
HMM’s will be obtained from the second repetition of each utterance.  We expect the results to
show that Malcom will outperform HMM’s on this task.
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V.C  Evaluation of Low Bit-Rate Speech Coding
As discussed in section V.A, in the process of creating word recognition models, Malcom
calculates the number of bits that would be needed to transmit the speech if we converted the
speech to articulator trajectories.  Thus, we will also provide an estimate of the number of
bits/second that would be saved by transmitting articulator positions instead of VQ codes.

VI. Subsequent Year Deliverables

While we believe it is likely that Malcom will perform better than HMM’s for speech
recognition, it has not yet been demonstrtated that Malcom will provide sufficient accuracy
for practical applications.  To the extent that speech recognition work has been continuing
for many years and is still inadequate, we see this research as high-risk work.  However, we
have also tried to make it clear that if Malcom does perform well, and we have reason to
believe it will, the payoff could be very large. Because of high risk, we focussed on
assessing the technology in the first year of research.  Nonetheless, we have considered, and
hope to study, modifications of Malcom that will have to be made to cope with more
complex speech recognition tasks.  Some possible extensions include: 1) using mixtures of
Gaussians instead of simple Gaussians to represent the articulator distributions that produce
the various sound types, 2) Allowing the diphone models to stretch or shrink to account for
different speaking rates, 3) extending Malcom to multiple speakers by finding functions to
convert the articulator-acoustic mapping for one person into the mapping for another (some
techniques for doing so have already been devised but not tested).

In the area of speech coding, we hope to be able to use Malcom to encode voicing
information as well as information about the vocal tract transfer function (which is
essentially what we process now).  This could make speech coding more efficient and
further decrease the costs of sattelite communications.
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